Pre-emptive infusion with CD19-directed, CAR-modified T cells infused after autologous or allogeneic hematopoietic cell transplantation for patients with advanced CD19+ malignancies

Session 723. Clinical Allogeneic and Autologous Transplantation: Late Complications and Approaches to Disease Recurrence: Relapse
American Society of Hematology
December 7, 2015
Because MD Anderson is committed to the protection of human subjects and the effective management of its financial conflicts of interest in relation to its research activities, MD Anderson has implemented an Institutional Conflict of Interest Management and Monitoring Plan to manage and monitor the conflict of interest with respect to MD Anderson’s conduct of this research.
Background

• Chimeric antigen receptor (CAR)-modified T cells have:
 – Eradicated tumor in relapsed disease setting

• CAR⁺ T cells can:
 – Be a bridge to hematopoietic stem-cell transplantation (HSCT)

• CAR⁺ T cells may:
 – Consolidate graft-versus-tumor effect after HSCT
 • Reduced tumor burden decreases the risk of cytokine storm and related toxicities
Objectives and rationale

• Implemented two clinical trials infusing T cells expressing CAR in adjuvant setting
 • Autologous
 • New data
 • Allogeneic
 • Updated

• Test *Sleeping Beauty* (SB) transposon/transposase system to express a CD19-specific CAR in patient- and donor-derived T cells
 – Nimble system
 – Cost-effective

• Enroll recipients at high risk of relapse after HSCT for advanced B-lymphoid malignancies
SB system to genetically modify T cells to target CD19 via CAR

2nd generation CD19-specific CAR (CD19RCD28) signaling through CD28 & CD3-ζ

Transposon (Donor) sequences flanked by inverted repeats are integrated into genome

Transposase (Helper) expression is transient

Plasterk RH, Cell 74(5):781, 1993
Produce clinical-grade CAR\(^+\) T cells

Two major manufacturing technologies:
1. SB system for gene transfer
2. Activating and propagating cells (AaPC) to retrieve CAR\(^+\) T cells in culture

Irradiated AaPC
Derived from K-562 cells and modified to co-express CD19, CD86, CD137L, membrane-bound IL-15 (and CD64)

Methods available, including at:
Characterization of manufactured T cells

Outgrowth of genetically modified T cells, and T-cell subsets, similar between patient and donor-derived products.
Quality of manufactured T cells

- Preserved telomere length
- Heterogeneous phenotype

No evidence for replicative senescence

Romero P. et al., JI 2007
Trial schema

• Study populations
 – CD19+ lymphoid malignancies beyond first remission, induction failure, or relapse at time of HSCT
 – 1-65 yrs-old for allo-HSCT; up to 75 yrs-old for auto-HSCT

• Preparative treatment
 – Auto-HSCT
 • BEAM prep
 • PBSC day 0, CAR T cells day +2
 – Allo-HSCT
 • HSCT prep per MD choice
 • Donor-derived T cells 6-12 weeks post HSCT
 • GVHD prophylaxis maintained

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Single T-cell dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>5 x 10^7/m^2 but ≤ 5 x 10^8/m^2</td>
</tr>
<tr>
<td>B</td>
<td>>5 x 10^8/m^2 but ≤ 5 x 10^9/m^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Single T-cell dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Not to exceed 10^6/m^2</td>
</tr>
<tr>
<td>B</td>
<td>>10^6/m^2 but ≤ 10^7/m^2</td>
</tr>
<tr>
<td>C</td>
<td>>10^7/m^2 but ≤ 5x10^7/m^2</td>
</tr>
<tr>
<td>D</td>
<td>>5x10^7/m^2 but ≤ 10^8/m^2</td>
</tr>
</tbody>
</table>

Per body surface area
Patient characteristics, outcomes of auto-CAR\(^+\) T cells

N=7 pts treated, 6 alive in CR with median 25.5 mo (range 6.4-32.7) follow-up

<table>
<thead>
<tr>
<th>P#</th>
<th>Age</th>
<th>Histo-logy</th>
<th>Stage at HCT</th>
<th>Prep</th>
<th>T-cell dose level (m(^2))</th>
<th>% CAR</th>
<th>Relapse</th>
<th>Status</th>
<th>Response duration (months) at last follow up</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P446</td>
<td>61</td>
<td>Follicular</td>
<td>DLBL, CR2, PET(^{-})</td>
<td>BEAM</td>
<td>5x10(^8)</td>
<td>87.5</td>
<td>No</td>
<td>CCR</td>
<td>32.7</td>
<td>None</td>
</tr>
<tr>
<td>P458</td>
<td>58</td>
<td>Nodular HL</td>
<td>DLBL, CR2, PET(^{-})</td>
<td>BEAM</td>
<td>5x10(^8)</td>
<td>77.2</td>
<td>No</td>
<td>CCR</td>
<td>29.7</td>
<td>None</td>
</tr>
<tr>
<td>P468</td>
<td>48</td>
<td>Follicular</td>
<td>Follicular, Rel1, PET(^{+})</td>
<td>BEAM</td>
<td>5x10(^8)</td>
<td>85.5</td>
<td>No</td>
<td>CCR</td>
<td>24.4</td>
<td>None</td>
</tr>
<tr>
<td>P471</td>
<td>55</td>
<td>DLBL</td>
<td>DLBL, Rel1, PET(^{+})</td>
<td>BEAM</td>
<td>5x10(^8)</td>
<td>90.4</td>
<td>No</td>
<td>CCR</td>
<td>27.4</td>
<td>None</td>
</tr>
<tr>
<td>*P509</td>
<td>59</td>
<td>DLBL with CNS</td>
<td>Residual CNS</td>
<td>BEAM</td>
<td>5x10(^8)</td>
<td>95.9</td>
<td>Yes</td>
<td>Alive</td>
<td>20.8</td>
<td>None</td>
</tr>
<tr>
<td>P708</td>
<td>36</td>
<td>DLBL</td>
<td>Recurrent in CNS</td>
<td>BEAM</td>
<td>5x10(^9)</td>
<td>92.2</td>
<td>No</td>
<td>CCR</td>
<td>12.4</td>
<td>None</td>
</tr>
<tr>
<td>P747</td>
<td>47</td>
<td>MCL</td>
<td>CR2, PET(^{-})</td>
<td>BEAM</td>
<td>5x10(^9)</td>
<td>91</td>
<td>No</td>
<td>CCR</td>
<td>6.4</td>
<td>None</td>
</tr>
</tbody>
</table>

* Patient 509 had decreased expression HLA-DR and PDL-1, increased expression of TIM3 and BTLA.
Survival for recipients of autologous CAR$^+$ T cells
Outcomes for sibling donor-derived CAR⁺ T cells

N=11 pts treated, 4 in CR with median 7.4 mo (range 3.4-14.4) follow-up

<table>
<thead>
<tr>
<th>P#</th>
<th>Age</th>
<th>Histo-logy</th>
<th>Stage at HSCT</th>
<th>Prep. Regimen</th>
<th>Dose level (m²)</th>
<th>BSA (m²)</th>
<th>Total T cells</th>
<th>% CAR</th>
<th>Days to CAR</th>
<th>Relapse</th>
<th>Status</th>
<th>Response duration (months)</th>
<th>Tox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>411</td>
<td>50</td>
<td>DLBL Refractory, PET⁺</td>
<td>BEAM</td>
<td>10^6</td>
<td>2.3</td>
<td>0.03</td>
<td>70.5</td>
<td>71</td>
<td>Y</td>
<td>Dead</td>
<td>1.0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>21</td>
<td>B-ALL CR3, MRD⁺</td>
<td>BuClo</td>
<td>10^6</td>
<td>1.5</td>
<td>0.02</td>
<td>96.8</td>
<td>54</td>
<td>Y</td>
<td>Dead</td>
<td>2.3</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>23</td>
<td>B-ALL CR2, MRD⁺</td>
<td>BuClo</td>
<td>10^6</td>
<td>1.6</td>
<td>0.02</td>
<td>96.5</td>
<td>64</td>
<td>Y</td>
<td>Dead</td>
<td>6.0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>41</td>
<td>B-ALL CR2, MRD⁺</td>
<td>VP16T BI12</td>
<td>10^7</td>
<td>2.3</td>
<td>0.28</td>
<td>66.6</td>
<td>43</td>
<td>Y</td>
<td>Dead</td>
<td>4.5</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>31</td>
<td>B-ALL CR2, MRD⁺</td>
<td>BuClo</td>
<td>10^7</td>
<td>2.3</td>
<td>0.23</td>
<td>91.2</td>
<td>64</td>
<td>Y</td>
<td>Dead</td>
<td>3.0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>459</td>
<td>25</td>
<td>B-ALL CR2, MRD⁻</td>
<td>BuClo</td>
<td>10^7</td>
<td>2.4</td>
<td>0.28</td>
<td>90.5</td>
<td>64</td>
<td>N</td>
<td>Dead</td>
<td>14.1</td>
<td>GVHD liver</td>
<td>None</td>
</tr>
<tr>
<td>P713</td>
<td>47</td>
<td>B-ALL Prior Allo, CR2, MRD⁻</td>
<td>FM</td>
<td>5 x 10^7</td>
<td>2.07</td>
<td>1.02</td>
<td>65.8</td>
<td>56</td>
<td>N</td>
<td>CCR</td>
<td>8.8</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>P641</td>
<td>38</td>
<td>B-ALL CR2, MRD⁻</td>
<td>BuClo</td>
<td>5 x 10^7</td>
<td>1.81</td>
<td>0.91</td>
<td>72.4</td>
<td>68</td>
<td>N</td>
<td>CCR</td>
<td>14.4</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>P647</td>
<td>28</td>
<td>B-ALL Ref Rel, MRD⁺</td>
<td>BuClo</td>
<td>5 x 10^7</td>
<td>1.45</td>
<td>0.76</td>
<td>82.3</td>
<td>57</td>
<td>Y</td>
<td>Dead</td>
<td>2.8</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>P753</td>
<td>56</td>
<td>B-ALL CR1, MRD⁻</td>
<td>FBVC</td>
<td>10^8</td>
<td>1.72</td>
<td>1.72</td>
<td>57.7</td>
<td>84</td>
<td>N</td>
<td>CCR</td>
<td>3.4</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>P718</td>
<td>44</td>
<td>B-ALL CR1, MRD⁺</td>
<td>BuClo</td>
<td>5 x 10^7</td>
<td>1.87</td>
<td>0.94</td>
<td>91.8</td>
<td>56</td>
<td>N</td>
<td>CCR</td>
<td>6.0</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

P718 underwent 1-antigen HLA-mismatched HSCT

Response duration based on last follow up
Survival for recipients of all allogeneic CAR⁺ T cells
Patient characteristics, outcomes of haploidentical donor-derived CAR$^+$ T cells

N=8 pts treated, 6 alive in CR with median 5.2 mo. (range 2.7-18.1) follow-up

<table>
<thead>
<tr>
<th>P#</th>
<th>Age</th>
<th>Histology</th>
<th>Stage at HSCT</th>
<th>Prep. regimen</th>
<th>T-cell dose level (m2)</th>
<th>BSA (m2)</th>
<th>Total T cells</th>
<th>% CAR</th>
<th>Days to CAR</th>
<th>Relapse</th>
<th>Status</th>
<th>Response duration (month)</th>
<th>Tox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>31</td>
<td>B-ALL</td>
<td>Allo2, MRD neg</td>
<td>FluMel</td>
<td>10^6</td>
<td>2.03</td>
<td>0.02</td>
<td>70.4</td>
<td>81</td>
<td>N</td>
<td>CCR</td>
<td>18.1</td>
<td>None</td>
</tr>
<tr>
<td>513</td>
<td>25</td>
<td>B-ALL</td>
<td>Auto, MRD neg</td>
<td>FluMel</td>
<td>10^6</td>
<td>1.74</td>
<td>0.02</td>
<td>93.3</td>
<td>66</td>
<td>N</td>
<td>CCR</td>
<td>7.2</td>
<td>GVHD, skin</td>
</tr>
<tr>
<td>P732</td>
<td>36</td>
<td>B-ALL</td>
<td>CR2, MRD pos</td>
<td>FluMel</td>
<td>10^7</td>
<td>2.04</td>
<td>0.2</td>
<td>67.8</td>
<td>46</td>
<td>Y</td>
<td>Alive</td>
<td>4.5</td>
<td>None</td>
</tr>
<tr>
<td>671</td>
<td>52</td>
<td>Follicular</td>
<td>Transformed DLBL, PET$^{<}$</td>
<td>FluCy-TBI 2Gy</td>
<td>10^7</td>
<td>2.2</td>
<td>0.21</td>
<td>95.2</td>
<td>45</td>
<td>N</td>
<td>CCR</td>
<td>13.2</td>
<td>None</td>
</tr>
<tr>
<td>P723</td>
<td>23</td>
<td>B-ALL</td>
<td>PIF in CR, MRD neg</td>
<td>FluMel</td>
<td>10^7</td>
<td>2.04</td>
<td>0.21</td>
<td>58.8</td>
<td>54</td>
<td>N</td>
<td>CCR</td>
<td>6.0</td>
<td>GVHD, skin</td>
</tr>
<tr>
<td>P771</td>
<td>46</td>
<td>B-ALL</td>
<td>CR1, MRD neg</td>
<td>FM-TBI 2Gy</td>
<td>5×10^7</td>
<td>1.92</td>
<td>0.96</td>
<td>56.8</td>
<td>67</td>
<td>N</td>
<td>CCR</td>
<td>3.9</td>
<td>None</td>
</tr>
<tr>
<td>P783</td>
<td>21</td>
<td>B-ALL</td>
<td>PIF, MRD pos</td>
<td>FluMel Thio</td>
<td>10^8</td>
<td>2.27</td>
<td>1.14</td>
<td>90.3</td>
<td>49</td>
<td>Y</td>
<td>Alive</td>
<td>2.9</td>
<td>None</td>
</tr>
<tr>
<td>P788</td>
<td>37</td>
<td>B-ALL</td>
<td>Allo,, MRD neg</td>
<td>FM-TBI 2Gy</td>
<td>10^8</td>
<td>1.74</td>
<td>1.14</td>
<td>83.8</td>
<td>74</td>
<td>N</td>
<td>CCR</td>
<td>2.7</td>
<td>None</td>
</tr>
</tbody>
</table>

Response duration based on last follow up
Survival for recipients of haploidentical allogeneic CAR\(^+\) T cells
Low levels of cytokines that signal through common \(\gamma\)-chain receptor at time of T-cell infusions

Lack of T-cell pro-survival cytokines in recipients
Persistence of infused CAR$^+$ T cells

<table>
<thead>
<tr>
<th>T-cell Dose Level and recipients (allo versus auto)</th>
<th>Number of patients infused</th>
<th>Average time (days) transgene detected</th>
<th>Maximum time (days) transgene detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD (allo)*</td>
<td>10</td>
<td>52</td>
<td>90</td>
</tr>
<tr>
<td>Haplo (allo)</td>
<td>8</td>
<td>54</td>
<td>180</td>
</tr>
<tr>
<td>All Auto patients</td>
<td>7</td>
<td>201</td>
<td>360</td>
</tr>
<tr>
<td>All Allo patients</td>
<td>19</td>
<td>51</td>
<td>180</td>
</tr>
</tbody>
</table>

*Excluding P718
Re-infusion of CAR$^+$ T cells

- Safely re-infuse CAR$^+$ T cells from patient-specific cryopreserved banks
 - 4 patients re-treated
- Two patients with ongoing responses to re-treatment
 - One patient re-treated and responded to 5x107/m2 CAR T cells without prior lympho-depleting chemotherapy
First-in-human use of SB system: Summary I

• Successful manufacture of T-cell products
 – 200 mL of peripheral blood (avoiding costs & inconvenience of apheresis)

• Safely infuse patients
 – No immediate or late toxicity
 – Decreased GVHD rate at 11%
 – Administered up to 10^8/m² genetically modified haplo-identical T cells
 – Decreased CMV reaction, 24% vs. 41%¹
 – Outpatient infusions

• Cytokines
 – Low levels of cytokine at time of T-cell infusion
 – Mild elevation, peak at ~2 weeks
 – No cytokine storm

First-in-human use of SB system: Summary II

• Survival of CAR$^+$ T cells

<table>
<thead>
<tr>
<th></th>
<th>Average, days</th>
<th>Max, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous</td>
<td>201</td>
<td>360</td>
</tr>
<tr>
<td>Allogeneic</td>
<td>51</td>
<td>180</td>
</tr>
</tbody>
</table>

- CAR$^+$ T cells exhibit longer persistence in the auto group
- No apparent positive correlation with T-cell dose
- No apparent correlation with disease burden

• Survival of recipients after CAR$^+$ T cells

<table>
<thead>
<tr>
<th></th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous</td>
<td>83%, 3-yr</td>
<td>100% 3-yr</td>
</tr>
<tr>
<td>Allogeneic (all)</td>
<td>53%, 1-yr</td>
<td>63%, 1-yr</td>
</tr>
<tr>
<td>Allogeneic (haploidentical)</td>
<td>75%, 1-yr</td>
<td>100%, 1-yr</td>
</tr>
</tbody>
</table>

- **Auto**: Compared with ~49% 3-year PFS reported for patients receiving auto-HSCT for advanced DLBL1
- **Allo**: Compared with 1-year OS 20 to 34% reported for this patient group2

1Sauter, C.S. *et al*., Blood 125, 2579-2581 (2015)
First-in-human use of SB system: Conclusions

• CAR\(^+\) T cells appear effective in the adjuvant disease setting
 – Overall survival doubled compared with historical controls

• Absence of GVHD
 – Large doses of HLA-mismatched CAR\(^+\) (TCR\(^+\)) T cells can apparently be safely infused; encouraging for use of third party T cells as off-the-shelf allogeneic therapy
Future

• Next-generation *Sleeping Beauty* trial safe-to-proceed (IND 16474, clinical trial.gov NCT02529813)
 – Infuse patients with active CD19+ lymphoid malignancy
 – Lymphodepletion followed by administration of CD19-specific CAR+ T cells
 – Altered CAR stalk to improve persistence
It takes a village….

Adult Transplant Faculty
- Richard Champlin
- Elizabeth Shpall
- Katy Rezvani
- Amanda Olson
- Yago Nieto
- Qaiser Bashir
- Jeffrey Molldrem
- Ian McNiece
- Martin Korbling
- Uday Popat
- Rima Saliba
- Muzaffar Qazilbash
- Krina Patel

Pediatric Transplant Faculty
- Borje Andersson
- Simrit Parmar
- Stefan Ciurea
- Roy Jones
- Nina Shah
- Saira Ahmed
- Paolo Anderlini
- Chitra Hosing
- Issa Khouri
- Amin Alousi
- Gabriela Rondon
- Gheath Al-Atrash

CooperLab
- Laurence Cooper
- Laura Worth
- Demetrios Petropoulos

GMP
- Dean Lee
- Priti Tewari

UTHealth
The University of Texas
MD Anderson Cancer Center
National Cancer Institute
PACT
Ziopharm Oncology, Inc.

Graduate School of Biomedical Sciences