Shortening the time to manufacture CAR+ T cells with Sleeping Beauty system supports T-cell engraftment and anti-tumor effects in patients with refractory CD19+ tumors

Partow Kebriaei1, Helen Huls2, Susan Neel1, Simon Olivares3, Aaron Orozco3, Shihuang Su3, Sourindra Maiti3, Amy Smith4, Eleanor de Groot4, Hagop Kantarjian5, Maro O’Hanian5, Katy Rezvani1, Elizabeth J. Shpall1, Richard E. Champlin1, Laurence J.N. Cooper4, Harjeet Singh3

1Stem Cell Transplantation and Cellular Therapy, MDACC, Houston, TX
2Intrexon, Germantown, MD
3Pediatrics, MDACC
4Ziopharm Oncology, Boston, MA
5Leukemia, MDACC
1st generation: First-in-human Sleeping Beauty-modified T cells

Electroporation of DNA plasmids coding for Sleeping Beauty (SB) transposon (CD19-specific CAR) and transposase (SB11) results in:

- Published data
 - Stable integration of CAR;
 - In vivo persistence of genetically modified T cells;
 - Anti-tumor effects after hematopoietic stem-cell transplantation.

- New data (2017 ASH #2059)
 - Long-term persistence of infused T cells (currently, detected for up to 4 years in some recipients)
 - Long-term multi-year survival of patients with NHL (OS 100%) and ALL (OS 49%)

J Clin Invest. 2016 Sep 1;126(9):3363-76
2nd generation: Improvements to the SB system

- CAR design
- Shorten T-cell manufacture on feeder cells
- Shorten release testing

Irradiated feeder cells derived from K-562 genetically modified to co-express CD19 and co-stimulatory molecules
Study Design: Clinical Trial # NCT02529813

- Adult and pediatric patients, 1-80 years
- Active CD19\(^+\) lymphoid malignancies
- Fludarabine (FLU) & Cytoxan (CTX) lymphodepletion
- Standard 3+3 design with Dose Levels from \(>10^5\) to \(\leq 10^9\) CD3\(^+\)CAR\(^+\)/kg

T-cell and Adult Patient Summary

Characterization of the infusion product: CAR⁺ T cells were generated by co-culture with feeder cells and cytokines. Total cell manufactured along with percent expression (by flow cytometry) of CD3 and CAR is shown for each patient.

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Dose Level</th>
<th>Dx</th>
<th>Age</th>
<th>Lymphodepletion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-1</td>
<td>DLBCL</td>
<td>36</td>
<td>Regimen A</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>CLL</td>
<td>68</td>
<td>Regimen B</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>ALL</td>
<td>40</td>
<td>Regimen A</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>ALL</td>
<td>41</td>
<td>Regimen A</td>
</tr>
<tr>
<td>16</td>
<td>+1</td>
<td>ALL</td>
<td>16</td>
<td>Regimen B</td>
</tr>
<tr>
<td>9</td>
<td>+2</td>
<td>ALL</td>
<td>29</td>
<td>Regimen A</td>
</tr>
<tr>
<td>13</td>
<td>+2</td>
<td>ALL</td>
<td>47</td>
<td>Regimen A</td>
</tr>
<tr>
<td>14</td>
<td>+2</td>
<td>DLBCL</td>
<td>72</td>
<td>Regimen A</td>
</tr>
</tbody>
</table>

*Regimen A: FLU 30 mg/m², CTX 500 mg/m² x 3 days
Regimen B: FLU 25 mg/m², CTX 250 mg/m² x 3 days
2013-1018 Interim Adult Patient Summary

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Dose (CD3^+CAR^+/kg)</th>
<th>Dose Level</th>
<th>Dx</th>
<th>STIMs*</th>
<th>Best Response**</th>
<th>Survival Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7.7x10^4</td>
<td>-1</td>
<td>DLBCL</td>
<td>2</td>
<td>NR</td>
<td>Deceased</td>
</tr>
<tr>
<td>2</td>
<td>1x10^6</td>
<td>+1</td>
<td>CLL</td>
<td>4</td>
<td>NR</td>
<td>Alive, 1 yr</td>
</tr>
<tr>
<td>4</td>
<td>1x10^6</td>
<td>+1</td>
<td>ALL</td>
<td>3</td>
<td>CR, 3m</td>
<td>Alive, 1 yr</td>
</tr>
<tr>
<td>8</td>
<td>1x10^6</td>
<td>+1</td>
<td>ALL</td>
<td>3</td>
<td>CR, 1m</td>
<td>Alive, 3m</td>
</tr>
<tr>
<td>16</td>
<td>1x10^6</td>
<td>+1</td>
<td>ALL</td>
<td>2</td>
<td>TBD</td>
<td>Alive, 1m</td>
</tr>
<tr>
<td>9</td>
<td>1x10^7</td>
<td>+2</td>
<td>ALL</td>
<td>2</td>
<td>NR</td>
<td>Alive, 1m</td>
</tr>
<tr>
<td>13</td>
<td>9x10^6</td>
<td>+2</td>
<td>ALL</td>
<td>2</td>
<td>CR, 3m***</td>
<td>Alive, 3m</td>
</tr>
<tr>
<td>14</td>
<td>1x10^7</td>
<td>+2</td>
<td>DLBCL</td>
<td>3</td>
<td>CR, 1m</td>
<td>Alive, 1m</td>
</tr>
</tbody>
</table>

*The every 7- to 10-day addition of feeder cells is a "stim". Feeder cells derived from K-562 genetically modified to co-express CD19 and co-stimulatory molecules.

**Best Response: CR= Complete Response, NR= No Response, PD=Progressive Disease

*** MRD+
Summary of Related Adverse Events

No dose limiting toxicities

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Patient</th>
<th>Event</th>
<th>Grade</th>
<th>Serious</th>
<th>Attribution</th>
<th>Onset (Days after Infusion)</th>
<th>Resolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>6</td>
<td>CRS: Fever</td>
<td>1</td>
<td>-</td>
<td>PO</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Hypotension</td>
<td>2</td>
<td>-</td>
<td>PR</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Sinus Tachycardia</td>
<td>1</td>
<td>-</td>
<td>Def</td>
<td>0</td>
<td>Intermittent</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Fever</td>
<td>1</td>
<td>-</td>
<td>Def</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Chills</td>
<td>1</td>
<td>-</td>
<td>Def</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>Sinus Tachycardia</td>
<td>1</td>
<td>-</td>
<td>Def</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>CRS: Fever</td>
<td>1</td>
<td>-</td>
<td>Def</td>
<td>9</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>CRS: Fever, cardiac arrhythmia</td>
<td>2</td>
<td>Yes</td>
<td>Def</td>
<td>10</td>
<td>Y</td>
</tr>
</tbody>
</table>

Attribution: PO=Possible, PR=Probable, Def=Definitely
In vivo persistence of SB-modified T cells

Digital droplet polymerase chain reaction (ddPCR)

Flow cytometry

Each symbol represents an individual patient and horizontal bar the ‘mean’.

Two outliers omitted
Detection of T cells and loss of B cells

Patient 8 - ALL

Patient 14 - DLBCL

Percent CAR was calculated from CD3+ gated T cells and CD19 was calculated from viable (CD45+) lymphocyte gate.
Summary and Conclusions

- Shortened T-cell manufacturing on feeder cells to approximately 2 weeks
- Modifying testing to rapidly release products
- Persistence of SB-modified CAR+ T cells by ddPCR and flow cytometry
- Encouraging safety profile and anti-tumor effects
- Study is ongoing
- 2nd-generation SB-modified CD19-specific CAR+ T-cell trial serves as platform, providing data supporting 3rd-generation trial for very-rapid (<2 days) T-cell manufacture under point-of-care (P-O-C)
Goal: Implement in 2018 a new approach to very rapidly manufacture genetically modified CAR⁺ T cells in under 2 days (termed “point-of-care”)

1st generation SB complete: CAR⁺ T cells
- Manufacture ~4 weeks
- Cryopreserve
- Release testing 14 days
- Safety, feasibility & efficacy of SB system
- Publication #: 2059

2nd generation SB ongoing: CAR⁺ T cells
- Manufacture →~2 weeks
- Cryopreserve
- Release testing 14 → 7 days
- Revise CAR design, shorten manufacture and release testing

3rd generation planned 2018: CAR⁺mbIL15*Switch⁺ T cells
- Manufacture ≤ 2 days
- Release testing Same day
- Very rapid (< 2 days) manufacture without need for feeder cells, administer fresh T cells
- Publication #: 1324
It takes a village…

Adult Transplant Faculty
- Richard Champlin
- Elizabeth Shpall
- Katy Rezvani
- Amanda Olson
- Yago Nieto
- Qaiser Bashir
- Jeffrey Molldrem
- Chitra Hosing
- Issa Khouri
- Rima Saliba
- Muzaffar Qazilbash
- Borje Andersson
- Simrit Parmar
- Stefan Ciurea
- Roy Jones
- Rohtesh Mehta
- Sairah Ahmed
- Paolo Anderlini
- Uday Popat
- Amin Alousi
- Gabriela Rondon
- Gheath Al-Atrash

Pediatric Transplant Faculty
- Kris Mahadeo
- Sajad Khazal
- Demetrios Petropoulos

PATIENTS
- GMP
- Regulatory Group
- Research Nurses
- Patient Care Nurses
- Data Managers