Combination Immunotherapy with NY-ESO-1 Specific CAR T cells and T-Cell Vaccine Improves Anti-Myeloma Effect

Krina K. Patel1, Simon Olivares2, Harjeet Singh3, Lenka V. Horton1, Mary Helen Huls4, Muzaffar H. Qazilbash5, Partow Kebriaei6, Richard E. Champlin7 and Laurence JN Cooper3,4

1Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.
2Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.
3Novartis Corporation, Germantown, MD., 4ZIOPHARM Oncology, Boston, MA.

MAIN CONCLUSION

WE DEMONSTRATE THE FEASIBILITY OF GENERATING T-APC THAT PROPAGATE NY-ESO-1-SPECIFIC CAR T CELLS, INCREASE T-CELL PERSISTENCE IN VIVO, AND IMPROVE ANTI-MYELOMA EFFECT.

INTRODUCTION

- Multiple Myeloma
 - Systemic plasma cell malignancy
 - NY-ESO-1, a tumor-associated antigen (TAA)
 - Expressed by majority of patients with high risk or relapsed multiple myeloma
 - Absent expression on healthy cells/tissues
 - Prognostic
 - Overall survival less than 2 years concordant with high risk disease
 - Incrable in standard risk and high risk disease despite combination of novel therapies including Bortezomib/IMiDs/lenalidomide and autologous transplant with lenalidomide maintenance

- T cells expressing chimeric antigen receptor (CAR)
 - Early clinical trials in myeloma patients have shown promise
 - High risk patients with myeloma in urgent need of effective novel therapies
 - CAR can recognize peptide processed from NY-ESO-1 in context of HLA A2

- T cells expressing T-cell receptor (TCR)
 - Clinical trials in synerial carcinoma and multiple myeloma demonstrate that T cells expressing NY-ESO-1-specific TCR have anti-tumor effects
 - Affinity-modified TCR can recognize peptide processed from NY-ESO-1 in context of HLA A2

- Cancer vaccine
 - T cells as antigen presenting cells (T-APC)
 - Generation and manipulation of clinical grade T-APC to present TAA has a path for clinical translation.

- Premise
 - Enforced expression of membrane-bound IL-15 (mIL-15) on the surface of NY-ESO-1-pulsing T-APC by non-viral gene transfer using Sleeping Beauty (SB) system improves persistence of T cells
 - Autologous T-APC expressing NY-ESO-1 can activate and neurologically expand antigen-specific effector T cells as effectively as our control activating and propagating cells (A/Pc) derived from genetically modified K-562 cells.
 - The NY-ESO-1 specific effector T cells will persist longer in vivo when infused with T-APC versus alone and will lead to improved myeloma control.

HYPOTHESIS

- To Improve Treatment Outcome
 - Adipotively transfer genetically modified T cells expressing CAR for T-cell receptor, TCR specific for NY-ESO-1 with autologous T-APC expressing NY-ESO-1 for improved persistence and anti-tumor effect
 - Combination of NY-ESO-1 CAR T cells with NY-ESO-1 T-APC vaccine

STUDY RATIONALE

RESULTS

Generation of NY-ESO-1-specific effector T cells

Characterization of T-APC

Generation of T-APC

CONCLUSIONS

- SB system can be used to generate NY-ESO-1 T-APC from peripheral blood mononuclear cells.
- NY-ESO-1 T-APC can propagate NY-ESO-1 specific CAR T cells.
- Propagated CAR T cells exhibit redirected specificity for NY-ESO-1 to multiple myeloma.
- Co-administration of NY-ESO-1 T-APC with NY-ESO-1 CAR T cells leads to improved persistence of effector T cells.

FUTURE DIRECTIONS

- Continue evaluation of CAR T cells in combination with T-APC vaccine in vivo.
- Consider clinical trial using the combination of CAR T cells and T-APC vaccine in high risk and/or relapsed refractory multiple myeloma patients.

REFERENCES

ACKNOWLEDGEMENTS

Thank you to the Myeloma SPORE CDP program for funding this project.

CONFLICT OF INTEREST

This study was supported by grants from the following organizations and/or persons: Novartis Corporation, Germantown, MD, ZIOPHARM Oncology, Boston, MA.