Rapid production of T cells co-expressing CAR and membrane-bound IL-15 potentiates antitumor activity and promotes in vivo memory

Lenka V. Hurton1, Harjeet Singh1, Kirsten Switzer1, Tiejuan Mi2, Leo G. Flores II1, Aaron Orozco1, Sourindra Maji1, Shihuang Su1, Amer Najjar1, Tim Chan2, Rutul R. Shah2, Partow Kebrabiai3, Richard E. Champlin3, Laurence J. Cooper1,4

1Pediatrics – Research, MD Anderson Cancer Center, The University of Texas-Houston (MDACC); 2Precigen inc. (subsidiary of Intrexon Corporation, Germantown, MD); 3Stem Cell Transplantation and Cellular Therapy, MDACC; 4Ziopharm Oncology, Inc., Boston, MA

BACKGROUND

Genetic Modification of T Cells
- Chimeric antigen receptor (CAR) redirects T-cell specificity to CD19 based on fusion of a monoclonal antibody single-chain variable fragment (scFv) coupled to T-cell activation/signaling endodomain
- The Sleeping Beauty (SB) non-viral gene transfer system
 - Successfully tested in humans to express a CD19-specific CAR (Kebrabiai et al. JCI, 2016; PMID: 27482888)
 - Quiescent T cells can be stably genetically modified using SB system DNA plasmids
 - Eliminates the need to propagate cells in tissue culture

Scale-up and Costs of CAR T-Cell Therapy
- T cells genetically modified with virus require (i) recombinant retrovirus/lentivirus and (ii) ex vivo replication/proagation
- Current manufacture protocols add complexity to produce patient-derived products:
 - Requires time (minimum of 6 days)
 - Expense (viral production & T-cell propagation)

Improving CAR+ T Cells with Cytokine Co-signaling
- Interleukin 15 (IL-15) Homeostatic cytokine that supports long-lived memory T cells
- Inhibits activation-induced cell death
- Enhances in vivo antitumor activity
- Co-expression of a membrane-bound version of IL-15 (mbIL15) significantly enhances in vivo persistence and antitumor activity of CAR+ T cells
(Hurton et al. PNAS, 2016; PMID: 27849619)

METHODS

Fig. 1 Very rapid manufacture of T cells under P-O-C. The P-O-C approach can produce genetically-modified T cells in less than 2 days. This manufacturing process does not rely on activating and propagating T cells prior to gene transfer. Thus, following electroporation, the T cells can be “simply” infused. TN naive, TSCM stem cell memory, TCM central memory, TEM effector memory, and T Eff effector T cells.

Fig. 2 The mbIL15 construct. The IL-15 cDNA sequence was fused to the full-length IL-15Ra sequence via a flexible serine-glycine linker. The coding sequence was codon optimized and subcloned into a SB-derived DNA plasmid to be used for non-viral gene transfer.

Fig. 3 Generation of T cells under P-O-C that express CAR (left), mbIL15 (center), and CAR with mbIL15 (right). Mononuclear cells were genetically modified, using nucleofection (electroporation), with SB11 transposase DNA plasmid and: (i) CAR only, (ii) CAR and mbIL15, or (iii) CAR, mbIL15 & CAR & Co-signaling (IL-15Rα) signals to enhance survival. Electroporated T cells were then placed overnight in culture (with no exogenous cytokines) prior to injection into mice.

Fig. 4 Mouse model with established and disseminated leukemia. NOG Cg-Prl-Ko/dm1Sg2aRgKrdM2j (NOG) mice were intravenously challenged with 1.1x10⁶ CD19+ NALM-6 leukemia cells that expressed firefly luciferase (ffLuc). Six days later when leukemia was established via bioluminescent imaging (BLI), a single T-cell infusion of 10⁵ CAR+ P-O-C CAR or P-O-C mbIL15-CAR T-cells, 2x10⁵ CAR+ T-cells of P-O-C CAR or 6x10⁵ total cells for P-O-C mbIL15-CAR were intravenously injected for T-cell treatments. To calculate T-cell dosing, CAR on the cell surface was measured the day after electroporation which is a composite of initial CAR, or 6x10⁶ total cells for P-O-C mbIL15 (CARneg) were intravenously injected for T-cell treatments.

RESULTS

Fig. 5 Phenotype of genetically modified T cells at infusion. Less than 2 days after genetic modification, the P-O-C T-cells were harvested for infusion. The T-cells were assessed for (A) CAR and mbIL15 expression of gated CD3+ cells (a sum of integrated and episomal expression), as well as (B) CD4 and CD8 ratio of gated CD3+ cells for mbIL15 (bottom) and mbIL15 CAR+ CD3+ cells for CAR (middle), and mbIL15-CAR (top) T cells.

Fig. 6 P-O-C mbIL15-CAR T cells significantly improve survival. Kaplan Meier survival curves show disease-free survival whereby mice were considered disease-free when tumor flux was <3.5x10⁶ pCl/μl. Arrow indicates the day genetically modified cells were injected. Significance determined by log-rank (Mantel-Cox). *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA.

Fig. 7 P-O-C mbIL15-CAR T cells exhibit potent antitumor activity after one low T-cell dose. Quantitated tumor burden (ffLuc activity) was measured by BLI. Each line represents an individual animal. Arrows indicated the day genetically modified cells were injected.

Fig. 8 Persistence and memory composition of CAR+ P-O-C T cells at treatment endpoint. Splenocytes of moribund mice were analyzed to assess the persistence of genetically modified human T cells (top left), as well as the frequencies of memory subsets delineated by CD4+CD25 and CD69 expression. Memory subset data is shown for mice where a CAR+ population was observed and was gated on CAR+CD3+CD8+CD45RO-CD69+ cells. CD95 expression was used to identify a Teff-like subset (bottom right) from the Tem subset (bottom left). Data were pooled from two independent experiments.

CONCLUSIONS

- P-O-C mbIL15-CAR T cells can be rapidly generated without ex vivo activation or propagation
- With one low-dose, P-O-C mbIL15-CAR T cells exhibited enhanced survival and more potent antitumor activity than other treatments
- Doubling the dose of P-O-C CAR improved survival and antitumor activity, but did not achieve the treatment effects of P-O-C mbIL15-CAR T-cells
- Recovered P-O-C CAR (2x10⁵ CAR+ dose) and P-O-C mbIL15-CAR T cells were primarily Tem at sacrifice of mice, while P-O-C CAR (10⁶ CAR+ dose) T cells had progressed to differentiated Teff
- Low frequency Tem-like cells were observed in the P-O-C mbIL15-CAR T-cell treated mice
- These data support a clinical trial to very rapidly manufacture genetically modified T cells under P-O-C
- Reducing the manufacture time of CAR+ T cells under P-O-C can:
 - advance genetically modified cell-based therapies as a manufacturing platform with broad appeal
 - shorten time to treatment
 - decrease costs